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Abstract Recovering sentence boundaries from speech and
its transcripts is essential for readability and downstream
speech and language processing tasks. In this paper, we pro-
pose to use deep recurrent neural network to detect sentence
boundaries in broadcast news by modeling rich prosodic
and lexical features extracted at each inter-word position.
We introduce an unsupervised word embedding to represent
word identity, learned from the Continuous Bag-of-Words
(CBOW) model, into sentence boundary detection task as
an effective feature. The word embedding contains syntac-
tic information that is essential for this detection task. In
addition, we propose another two low-dimensional word
embeddings derived from a neural network that includes
class and context information to represent words by super-
vised learning: one is extracted from the projection layer,
the other one comes from the last hidden layer. Furthermore,
we propose a deep bidirectional Long Short Term Memory
(LSTM) based architecture with Viterbi decoding for sen-
tence boundary detection. Under this framework, the long-
range dependencies of prosodic and lexical information in
temporal sequences are modeled effectively. Compared with
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previous state-of-the-art DNN-CRF method, the proposed
LSTM approach reduces 24.8% and 9.8% relative NIST SU
error in reference and recognition transcripts, respectively.
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1 Introduction

Recent years have witnessed significant progress in auto-
matic speech recognition (ASR), especially with the devel-
opment of deep learning technologies [1]. However, the
output of ASR systems is typically rendered as a stream
words missing of important structural information such as
sentence boundaries. Below shows an example from the
RT04-LDC2005T24 broadcast news corpus.1

ASR Output:
americans have come a long way on the tobacco road the
romance is gone so joe camel smokers are out in the cold
banned in baseball parks restaurants and even in some
bars

Human Transcript:
Americans have come a long way on the tobacco road.
The romance is gone now. So is Joe Camel. Smokers are
out in the cold banned in baseball parks restaurants and
even in some bars.

As we know, punctuation, in particular sentence bound-
aries, is crucial to human legibility [2]. Words without
appropriate sentence boundaries may cause ambiguous
meaning of some utterances. In a dictation system like voice

1https://catalog.ldc.upenn.edu/LDC2005T24.
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input on mobile phones, user experience can be greatly
improved if punctuations are automatically inserted as the
user speaks. Besides improving readability, the presence of
sentence boundaries in the ASR transcripts can help down-
stream language processing applications such as parsing
[3], information retrieval [4], speech summarization [5],
topic segmentation [6, 7] and machine translation [8, 9].
In these tasks, it is assumed that the transcripts have been
already delimited into sentence-like units (SUs). Kahn et al.
[3] showed that the error reduced significantly in pars-
ing performance by using an automatic sentence boundary
detection system. Matusov et al. [9] reported that sentence
boundaries are extremely beneficial for machine translation.
Thus, sentence boundary detection is an important precur-
sor to bridge automatic speech recognition and downstream
speech and language processing tasks.

Sentence boundary detection, also called sentence seg-
mentation, aims to break a running audio stream into sen-
tences or to recover the punctuations in speech recognition
transcripts. This problem has been previously formulated as
one of the metadata extraction (MDE) tasks in the DARPA-
sponsored EARS program2 and NIST rich transcription
(RT) evaluations.3 The goal of this work is to create an
enriched speech transcript with sentence boundaries. The
sentence boundary detection task is usually formulated as
a binary classification or sequence tagging problem where
we decide whether a candidate position should be a sen-
tence boundary or not. The boundary candidate can be any
inter-word region in a text or a salient pause in an audio
stream. Features are always extracted from either text or
audio stream or both near the candidate period. The features
from text are named as lexical features, others from audio
are called as prosodic features.

In the past several years, deep learning methods have
been successfully applied to many sequential prediction and
classification tasks, such as speech recognition [1, 10, 11],
word segmentation [12], part-of-speech tagging and chunk-
ing [13]. A deep neural network (DNN) learns a hierarchy
of nonlinear feature detectors that can capture complex sta-
tistical patterns. In a deep structure, the primitive layer in
the DNN nonlinearly transforms the inputs into a higher
level, resulting in a more abstract representation that better
models the underlying factors of the data. Our recently pro-
posed DNN-CRF work [14] has shown that by capturing a
hierarchy of prosodic information the DNN is able to detect
sentence boundary in a more effective way.

In this paper, we propose a new approach that is dif-
ferent from the previous work. The previous DNN-CRF
approach used a DNN to capture abstract information (i.e.,

2http://www.darpa.mil/iao/EARS.htm.
3http://www.nist.gov/speech/tests/rt/.

probabilities) on prosodic features, then integrated this
information with lexical features into a CRF model. How-
ever, in this work, we capture the hierarchy of prosodic
and lexical information simultaneous by using deep bidirec-
tional LSTM model to leveraging its ability in remembering
long context information. Through modeling the prosodic
and lexical features at the same time, we can get some
complementary and temporal information between them.
Specifically, our contributions are summarized as follows:

1) We introduce three continuous valued word embed-
dings as new lexical features to represent word iden-
tities into the sentence boundary detection task. The
first one is an unsupervised word embedding, trained by
Continuous Bag-of-Words (CBOW) model [15]. The
second one is derived from the projection layer of a
LSTM [16] based neural network through supervised
learning. The third one is extracted from the last hid-
den layer of the neural network. Experimental results
show the word embedding is good lexical feature in
the sentence boundary detection task and improves the
performance significantly.

2) We propose a deep bidirectional LSTM based architec-
ture with global Viterbi decoding for sentence boundary
detection. This approach is designed to effectively uti-
lize prosodic and lexical features, so as to exploit their
temporal and complementary information. Compared
with the previous DNN-CRF method, the proposed
approach reduces 24.8% and 9.8% relative NIST SU
Error in reference and recognition transcripts, respec-
tively.

In Section 2, we provide a brief review on previous
studies related to the sentence boundary detection task. In
Section 3, we describe the proposed sentence boundary
detection approach. In Section 4, the conventional prosodic
and lexical features are described. After that, we introduce
the new lexical features (word embedding) in Section 5. We
discuss the experiments and results in Section 6. Finally, the
conclusions are drawn in Section 7.

2 Related Works

For a classification or sequence tagging problem, studies
mainly focus on finding useful features and models. For
the sentence boundary detection task, researchers mostly
investigate new features and models that are effective in
discriminating sentence boundaries or non-boundaries. For
the features, speech prosodic cues and lexical knowledge
sources are investigated a lot. Prosodic cues, described by
pause, pitch and energy characteristics extracted from the
speech signals, always convey important structural infor-
mation and reflect breaks in the temporal and intonational

http://www.darpa.mil/iao/EARS.htm
http://www.nist.gov/speech/tests/rt/
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contour [17–20]. Studies show that sentence boundaries
are often signaled by a significant pause and a pitch reset
[6, 14, 19, 21, 22]. Lexical knowledge sources, such as
Part-of-Speech (POS) tags and syntactic Chunk tags, are
well known information that indicates important syntac-
tic knowledge of sentences [21]. For the models, several
discriminative and generative models have been studied,
including Decision Tree (DT) [6, 22, 23], Multi-layer Per-
ception (MLP) [24], Hidden Markov Model (HMM) [6, 21],
Maximum Entropy (ME) [21], Conditional Random Fields
(CRF) [14, 21, 25–27], and so on.

Inspired by the finding that the speech prosodic struc-
ture is highly related to the discourse structure [6, 28], some
researchers have studied the use of only prosodic cues in
sentence boundary detection. For example, Haase et al. [23]
proposed a DT approach based on a set of features related
to F0 contours and energy envelopes. Shriberg and Stolcke
[6] have shown that a DT model learned from prosodic fea-
tures can achieve comparable performance with that learned
from complicated lexical features. It is worth noting that, as
compared with the lexical approaches, prosodic approaches
usually do not use textual information and the influence
of unavoidable speech recognition errors can be avoided.
In addition, prosodic cues are known to be relevant to dis-
course structure across languages [29] and hence prosodic-
based approaches can be directly applied to multilingual
scenarios [29–31].

Although prosodic approaches have benefit in avoiding
the effect of speech recognition errors, lexical information is
still worth studying. Because the semantic and syntax cues
are highly relevant to sentence boundaries [14, 21, 24, 32].
Stolcke and Shriberg [32] studied the relevance of several
word-level features for segmentation of spontaneous speech
on the Switchboard corpus. Their best results were achieved
by using POS n-grams, enhanced by a couple of trigger
words and biases. Similarly, on the same corpus, Gavalda
et al. [24] designed a multi-layer perception (MLP) sys-
tem based on the features of trigger words and POS tags
in a sliding window reflecting lexical context. Stevenson
and Gaizauskas [33] implemented a memory-based learn-
ing algorithm to detect sentence boundary on the Wall Street
Journal (WSJ) corpus. They extracted totally 13 lexical fea-
tures to predict whether an inter-word position is a boundary
or not. In addition, statistical language model has been
widely used in sentence boundary detection [5, 34–36] and
punctuation prediction [37].

However, the above works only use either prosodic infor-
mation or lexical knowledge. Good results of sentence
boundary detection are often achieved by using both lex-
ical and prosodic information, since these two knowledge
sources are complementary in improving the performance.
Gotoh and Renals [38] combined the probabilities from
a language model and a pause duration model to make

sentence boundary decisions. Later, they proposed a statis-
tical finite state model that combines prosodic, linguistic
and punctuation class features to annotate punctuation in
broadcast news [39]. Kim and Woodland [40] performed
punctuation insertion during speech recognition. Prosodic
features together with language model probabilities were
used within a decision tree framework. Shriberg et al. [6]
integrated both lexical and prosodic features by a decision
tree - hidden Markov model (DT-HMM) approach, where
decision tree over prosodic features is followed by a hid-
den Markov model of lexical features. Since the HMM has a
drawback that maximizes the joint probability of the obser-
vations and hidden events, as opposed to maximizing the
posterior probability that would be a more suitable criterion
to the classification task, Liu et al. [21] proposed a deci-
sion tree - conditional random fields (DT-CRF) approach
that pushed the state-of-the-art performance of sentence
boundary detection to a new level. Similar to the DT-
HMM approach [6], the boundary/non-boundary posterior
probabilities from the DT prosodic model were quantized
and then integrated with lexical features in a linear-chain
CRF. In the CRF, the conditional probability of an entire
label sequence given a feature sequence is modeled with
an exponential distribution. Furthermore, instead of a DT
model in modeling prosodic features, our previous work
[14] proposed a deep neural network - conditional random
fields (DNN-CRF) approach that nonlinearly transformed
the prosodic features into posterior probabilities. Then the
posterior probabilities were integrated with lexical features
in the way similar to the previous work [21]. This approach
improved the performance a lot, because of DNN’s ability
in learning good representations from raw features through
several nonlinear transformations.

Different from the aforementioned studies, the method
developed in this paper trains the model using a rich set
of both prosodic and lexical features. Besides, unlike the
way of integrating different kind of features in previous DT-
HMM [6], DT-CRF [21] and DNN-CRF [14] approaches,
our proposed method combines the prosodic and lexical fea-
tures at the beginning as the inputs of a single model without
individually modeling each category features. Our motiva-
tion is to learn the salient and complementary information
between the combined raw features for effectively discrim-
inating sentence boundary or non-boundary by the model
itself. Another difference is that a deep bidirectional LSTM
network is used to learn effective feature representations
and capture long term memory, so as to exploit the tem-
poral information. The structure of the deep bidirectional
LSTM network will circumvent the serious limitations of
shallow models or DNN using a fixed window size in pre-
vious studies. Our experiments show that differences lead
to significant improvement in sentence boundary detection
task.
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3 Proposed Deep Bidirectional LSTM Approach

The proposed sentence boundary detection approach, as
shown in Fig. 1, consists of three stages: feature extraction,
model training and boundary labeling. This architecture
takes both prosodic and lexical knowledge sources as input
features extracted in the feature extraction stage. After
that, we train a deep bidirectional recurrent neural network
(RNN) model based on long short-term memory (LSTM)
[16] architecture (named as DBLSTM) to discover dis-
criminative patterns from the basic features by non-linear
transformations. The LSTM is well known in sequence
labeling which maps the observation sequence to the class
label sequence [41]. With bidirectional and deep architec-
ture, the performance of sequence labeling can be further
improved by the proposed DBLSTM approach. Finally, the
global decisions are achieved over a graph using the Viterbi
algorithm in the boundary labeling stage. The details of
feature extraction are described in Sections 4 and 5. This
section mainly describes the network architecture and the
Viterbi decoding.

3.1 Definition

As mentioned before, the sentence boundary detection
problem can be regarded as classification or sequence tag-
ging problem. For a classification problem, the posterior

probability p(yt |xt ) is calculated to decide which class
(yt ∈ {su, nsu}) should the example (t) belong to, given the
input features (xt ). This probability can be the output of a
neural network. For a sequence tagging problem, the most
likely sentence boundary or non-boundary sequence y is

ŷ = arg max
y

p(y|x)

= arg max
y

p(x, y)

= arg max
y

p(y)p(x|y)

We assume the input features are conditional independent
given the events, that is

p(x|y) = ΠT
t=1p(xt |yt ) = ΠT

t=1
p(yt |xt )p(xt )

p(yt )
(1)

and the probability p(y) is approximated as

p(y) = p(y1)Π
T
t=2p(yt |yt−1) (2)

then, the most likely sequence can thus be obtained as
follows:

ŷ = arg max
y

p(y)ΠT
t=1

p(yt |xt )

p(yt )
(3)

Since p(xt ) is fixed and thus can be ignored in the maxi-
mization operation. In our proposed approach, the posterior
probability p(yt |xt ) is the output of the neural network.

Figure 1 The architecture of
our proposed sentence boundary
detection system.
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The following part specifies the calculation of this posterior
probability.

3.2 Network Architecture

Unlike the previous DT-CRF [21] and DNN-CRF [14]
frameworks of using different knowledge sources individu-
ally, the proposed approach is designed to explicitly utilize
the complementary information between prosodic and lex-
ical features by directly concatenating them together as the
network’s inputs. The statistical correlations among dif-
ferent sources can be effectively learned from the fused
features by the proposed method, because the LSTM has
feedbacks from previous time steps and is hence able to
model temporal structure of input directly. In addition, the
LSTM is able to model temporal sequences and their long
range dependencies accurately. Furthermore, since context
information are useful for sequential labeling task, i.e.,
sentence boundary detection, the deep bidirectional LSTM
approach makes the decision for the input sequence by oper-
ating in both forward and backward directions to use the
history and future information.

For the LSTM, the hidden state activations h =
(h1, . . . , hT ) are iterated from t = 1 to T by the following
equations [41, 42]:

it = f (W xixt + Whiht−1 + W cict−1 + bi ) (4)

ft = f (W xf xt + Whf ht−1 + W cf ct−1 + bf ) (5)

ct = ft · ct−1 + it · h(W xcxt + Whcht−1 + bc) (6)

ot = f (W xoxt + Whoht−1 + W coct + bo) (7)

ht = ot · g(ct ) (8)

where it , ft , ot represent the activation values of input gate,
forget gate and output gate, respectively. ct is the state of the
memory cell at time t . f (·) is the sigmoid activation func-
tion of the gates. h(·) and g(·) are the cell input and output
activation function, respectively. W is the weight matrices,
e.g., W ci is the weight matrix between input gate and the
memory cell. b is the bias vectors, e.g., bi is the bias vector
for input gate.

The bidirectional LSTM is proposed to use all available
input information in the past and future of a specific time
frame [43] by two parts: forward states,

−→
h t , and backward

states,
←−
h t . The output probabilities are given as:

yt = g(W−→
h y

−→
h t + W←−

h y

←−
h t + by) (9)

Finally, a DBLSTM model can be simply established
by stacking multiple hidden layers of above bidirectional

LSTM. Back-propagation through time (BPTT) method
[44] is applied to train the model.

3.3 Tag Inference

For a sequence problem, the tag sequence should be decided
globally. Given a set of tags G = {su, nsu}, we define a
log transition score sij for jumping from i to j , {i, j} ∈ G.
The valid paths of tags are encouraged, while all other paths
are penalized. The score is tuned on the development set.
For an input feature vector xt , the normalized network score
pn(yt |xt ) is defined as below:

pn(yt |xt ) = log
pθ (yt |xt )

p(yt )
(10)

where pθ(yt |xt ) is the posterior probability from the net-
work with parameter θ at input xt , and p(yt ) is the prior
probability.

Given the input sequence x[1:T ] and tag sequence y[1:T ],
we apply log operation on Eq. 3, and the whole seq-
uence score is the sum of transition and normalized network
score:

f (y[1:T ], x[1:T ], θ) =
T∑

t=1

(syt−1yt + pn(yt |xt )) (11)

The best tag path ŷ[1:T ] can be found by maximizing the
sequence score:

ŷ[1:T ] = arg max
∀y[1:T ]

f (x[1:T ], y[1:T ], θ) (12)

The Viterbi algorithm is used for this tag inference.

4 Conventional Features

4.1 Conventional Lexical Features

As discussed in Section 2, syntactic tags (e.g., POS and
Chunk) constitute a prominent knowledge source for sen-
tence boundary detection. Because a sentence is usually
constrained via its syntactic structure. For example, the POS
tags embody syntactic information and thus can be natu-
rally used to deduce the position of sentence boundaries.
Therefore, we use POS and Chunk as syntactic features in
the sentence boundary detection task. In this paper, we use
the SENNA parser [13] to obtain the POS and Chunk tags
given a word stream. The IOBES tagging scheme is used for
chunking so as to map the word sequence to chunk stream
exactly like POS. It means each word has a POS tag and a
Chunk tag exactly.
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4.2 Prosodic Features

In our study, as shown in Fig. 1, we consider the inter-
word position as a boundary candidate and look at prosodic
features of the words immediately preceding and following
the candidate. A window of 200ms on both sides is also
considered, as suggested in [6].

A rich set of 162 prosodic features, shown as primary
cues for sentence boundary detection [6, 21, 22, 45], are
collected from the audio stream at the candidate posi-
tions according to the method described in [6] and [45].
Among these features, pause and word duration features
are extracted to capture prosodic continuity and boundary
lengthening phenomena. Pitch and energy related features
that reflect the pitch/energy declination and reset phenom-
ena are also extracted. Since we use broadcast news as our
experiment data, we also include speaker turn as a fea-
ture. From previous studies [6], speaker turn is a significant
boundary cue.

5 Word Embeddings

Conventional lexical features, such as word N-grams, POS
and Chunk, have shown their importance in sentence bound-
ary detection task. However, it is not straightforward for NN
to directly take these knowledge sources as their inputs. One
solution is to leverage conventional one-hot representation
which contains only one non-zero element in the vector with
the size of the entire vocabulary. Unfortunately, such sim-
ple representation meets several challenges. One is the curse
of dimensionality. Directly combination of this one-hot rep-
resentation with prosodic features is not easy for a neural
network to train a good model. The most critical one may
be that such representation cannot reflect any relationship
among different words even though they have high semantic
or syntactic correlation [46]. For example, although happy
and happiness have rather similar semantics, their corre-
sponding one-hot representation vectors don’t show that
happy is much closer to happiness than other words like sad.

Recently, some complex and deep methods on learn-
ing distributed representation of word (also known as word
embedding) that overcome above drawbacks have been
proposed [13, 15, 47–49]. Mikolov et al. [15] proposed
a continuous bag-of-words model (CBOW) for efficiently
computing continuous vector representations of words from
a very large unlabeled text data set. The semantically or syn-
tactically similar words can be mapped to close positions in
the continuous vector space, based on the intuition of similar
words likely yielding similar context.

In this work, we firstly introduce the CBOW embed-
ding into sentence boundary detection task as lexical fea-
tures. Secondly, we propose another two supervised word

embeddings to represent word identities. One is extracted
from the linear projection layer of a neural network, called
projected embedding. The other comes from the last hidden
layer of the network, named as hidden embedding. These
three words embeddings are included into lexical features.

5.1 CBOW Embedding

The CBOW model [15], as shown in Fig. 2, is similar to the
feedforward neural network language model (NNLM) [47],
where the hidden layer is removed and the projection layer
is shared for all words. In this CBOW model, the represen-
tations of words in history and future, which comes from
input layer, are summed at the projection layer followed
by a hierarchical softmax [50, 51] at the output layer for
computationally efficient approximation. The hierarchical
softmax uses a binary tree to represent the output layer with
|V | words as its leaves, where |V | is the vocabulary size of
the entire corpus. This hierarchical softmax explicitly rep-
resents the relative probability of a leaf node conditioned on
its context (p(wt |wt−1

t−c , w
t+c
t+1)) by computing along the path

from the root node to this leaf node using a defined energy
function.4 If there are S sequences in the data set, then the
log likelihood function is as below:

L(θ) =
S∑

s=1

⎛

⎝
Ts∑

ts=1

logp
(
wts |wts−1

ts−c , w
ts+c
ts+1

)
⎞

⎠ (13)

Our goal is to minimize the negative log likelihood func-
tion f (θ) = −L(θ) through stochastic gradient descend
(SGD) algorithm. Finally, continuous word embedding can
be learned using this simple CBOW model.

The continuous word embedding is learned from a large
of unstructured text data sets, including Wikipedia5 and
Broadcast News,6,7 through the word2vec tool.8 We build
the CBOW model with four history and four future words
at the input, by using the training criterion of correctly clas-
sifying the current (middle) word. The start learning rate is
set as 0.025 by default. The threshold for occurrence of fre-
quent words is 0.0001. Those with high frequency in the
training data will be randomly down-sampled. To obtain the
representation of each word appeared in the training data,
the minimum count is defined as 1. At last, 100 dimen-
sional word embeddings, which are used as proposed lexical
features, are obtained through 15 iterations.

4In word2vec tool, the energy function is simply defined as E(A, C) =
−(A ·C), where A is the vector of a word, and C is the sum of context
vectors of A. Then the probability p(A|C) = e−E(A,C)

∑V
v=1 e−E(Wv,C)

.

5http://mattmahoney.net/dc/text8.zip.
6https://catalog.ldc.upenn.edu/LDC2004T12.
7https://catalog.ldc.upenn.edu/LDC2005T24.
8https://code.google.com/p/word2vec/.

http://mattmahoney.net/dc/text8.zip
https://catalog.ldc.upenn.edu/LDC2004T12
https://catalog.ldc.upenn.edu/LDC2005T24
https://code.google.com/p/word2vec/
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Input Layer

Projection Layer

Output Layer

sum

(Hierarchical 

Softmax)

connect to every non-leaf node

wt+cwt+1wt-1wt-c

wt

Figure 2 The CBOW model architecture includes a hierarchical soft-
max in output layer. Each node is represented by a vector, but only
the input nodes and the leaf nodes in output layer indicate meaningful
words.

5.2 Proposed Supervised Embeddings

Different from the unsupervised word embeddings from the
CBOW model, we propose another two supervised word
embeddings as new lexical features for sentence boundary
detection task. These two supervised vectors are extracted
from a neural network learned with the supervision infor-
mation of sentence boundaries, as shown in Fig. 3. The
network takes several contextual words encoded by one hot
representation with |V | words in the vocabulary as inputs.
A mapping P , being shared across all the words in the con-
text, is applied to transform any element i of V to a low
dimensional real vector Pi ∈ Rm. We name this layer as
the projection layer. Given the contextual words {wt+c

t−c}, the
projected real vectors pt associated with interested word
wt are extracted as projected embedding. These projected
vectors {pt+c

t−c} are concatenated together to feed into the fol-
lowing hidden layer implemented with LSTM cells. After
that, a hidden layer with sigmoid neurons are attached. The
activations before applying sigmoid function in this hid-
den layer are extracted as the proposed hidden embedding.
Finally, we attach an output layer with a softmax operation
to calculate the conditional class probability.

We learn the neural network on the data sets similar to
those in the CBOW model training,9 using CNTK toolkit
[52] with cross-entropy criterion. The inputs of the best net-
work are current word with its 2 history and 2 future words.
The words are encoded into one hot representations and
its size is equal to the vocabulary dimension. The vocabu-
lary, including 53,643 words, is formed by mapping words
appeared less than 5 times in the data sets to unknown word.
The projected word embedding size is tuned as 50, so the

9The corresponding Wikipedia data set with sentence boundaries is
used.

Input Layer

Projection Layer

LSTM Layer

Hidden Layer

Output Layer

index for wt+cindex for wtindex for wt-c

P(wt-c) P(wt) P(wt+c)

Matrix P

Lookup 
Table in 

P 

Figure 3 The architecture shows the procedure of supervised word
embedding extraction. Two supervised word embeddings are extracted
from projection layer and last hidden layer, respectively. For word
embedding from the projection layer, only the projected vectors
(P(wt )) of word (wt ) at time t is used as features.

dimension of projection layer is 250 in total. By tuning with
different numbers of nodes, the network achieves best result
when the LSTM layer has 200 cells and the hidden layer
has 100 nodes. The output layer has 2 nodes to calculate
the posteriors of sentence boundary and non-boundary with
a softmax function. The learning rate is assign as 0.01 per
sample and momentum is 0.9 per mini-batch.

6 Experiments and Disscussion

6.1 Corpora and Evaluation Metrics

We evaluate the performance of sentence boundary detec-
tion using the proposed approaches on English broadcast
news. Note that our approaches can be easily applied to
other genres of spoken documents. The broadcast news data
comes from NIST RT-04F and RT-03F MDE evaluation.10

The released corpora from Linguistic Data Consortium
(LDC) only contain the training set of the evaluations (about
40 hours). In order to keep our experimental configuration
as identical as possible to [14, 21] for direct comparison, we
split 2-hour data from the RT-04F released data as the test-
ing set. Another 2-hour data is selected as the development
set for parameter tuning. The rest of the data (36 hours)
is used as the training set. The reference transcripts (REF)
are annotated according to the annotation guideline [53],
which assigns a “SU” tag at the end of a full sentence. The
automatic speech recognition outputs (ASR) are generated
from an in-house speech recognizer with a word error rate
of 29.5%. Each inter-word position is regarded as boundary
candidate. In the data, about 8% of the inter-word positions
are sentence boundaries.

10LDC2005S16, LDC2004S08 for speech data and LDC2005T24,
LDC2004T12 for reference transcriptions.
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All the evaluations presented in this paper use the per-
formance metrics including Precision, Recall, F1-measure
and NIST SU error rate (SU-ER). The SU-ER, given by
NIST in the EARS MDE evaluations,11 is determined by
finding the total number of inserted and deleted boundaries
and dividing by the number of reference boundaries. This is
the primary metric used in our comparisons. We calculate
SU-ER using the official NIST evaluation tools.12

6.2 Experiment Setups

For the sentence boundary detection task, we train mod-
els using the aligned pairs between extracted features and
boundary labels according to annotated REF transcripts, and
evaluate the models on both REF and ASR transcripts. Eval-
uation across REF and ASR transcripts allows us to study
the influence of speech recognition errors.

We first compare baseline DT and DNN methods with
proposed DBLSTM method only using prosodic features.
After that, our proposed new lexical features are evalu-
ated. Finally, prosodic and lexical features are fused into the
proposed DBLSTM method comparing with previous state-
of-the-art DT-CRF [21] and DNN-CRF [14] approaches.

In the baseline experiments, a C4.5 decision tree is built
using the WEKA toolkit13 based on prosodic features. The
DNN is fine tuned and trained by using stochastic gradi-
ent descent (SGD) on prosodic features and the minibatch
includes 256 shuffled training samples. The samples are
normalized so that each one is in a zero mean and unit vari-
ance distribution. To prevent overfitting, L2 weight decay
is set to 0.00001. The learning rate is initialized as 1.0
and reduced into half when the improvement on the devel-
opment set is less than 0.005. The training process will
be stopped once the error on the development data starts
to increase. When we integrate the posterior probabilities
from DT and DNN models trained on prosodic features
with lexical features into a linear-chain CRF model, we
first quantize the posterior probabilities into several bins:
[0, 0.1], (0.1, 0.3], (0.3, 0.5], (0.5, 0.7], (0.7, 0.9], (0.9, 1].
Because the CRF is implemented by the CRF++ toolkit14

and this tool can only handle discrete inputs.
We implement the DBLSTM system based on the CUR-

RENNT tool package15. The conventional hidden units are
replaced with the LSTM architecture in the recurrent neu-
ral network, whose objective function is a cross entropy for
binary classification. The model is trained with SGD by

11http://www.itl.nist.gov/iad/mig/tests/rt/2003-fall/.
12See http://www.itl.nist.gov/iad/894.01/tests/rt/2004-fall/.
13Available at: http://www.cs.waikato.ac.nz/ml/weka/index.html.
14Available at: https://code.google.com/p/crfpp/.
15http://sourceforge.net/projects/currennt/.

using Back Propagation Through Time (BPTT) [44] algo-
rithm to calculate the gradient. The network weights are
initialized randomly in [−0.08, 0.08] with a uniform distri-
bution. The learning rate and momentum are 0.00005 and
0.9, respectively. We train the network with 50 parallel shuf-
fled sequences in each epoch. To analysis the performance
of each type of features, the DBLSTM model is firstly tuned
with different number of hidden layers and nodes only using
prosodic or lexical features. After that, a fused DBLSTM
model is trained and tuned by concatenating the lexical and
prosodic features into long vectors as inputs.

6.3 Experiments on Lexical Features

6.3.1 Visualization

To observe the differences among the unsupervised and
supervised word embeddings, we visualize these high-
dimensional data by giving each data point a location in
a two-dimensional map using t-SNE tool [54]. The tool
starts by converting the high-dimensional Euclidean dis-
tances between data points into conditional probabilities
that represent similarities. The visualizations16 of the three
word embeddings are shown in Fig. 4. We observe that the
words represented by unsupervised CBOW embedding are
located symmetrically no matter whether the words are fol-
lowed by sentence boundaries or not. The words located
closely are similar in semantic or syntactic aspect without
considering their class information. When we get the word
embedding in the supervised way, the words followed by
the same class (boundary or non-boundary) tend to clus-
ter together, especially for the hidden embedding. Because
the hidden embedding is much discriminative and comes
from the hidden layer close to the output layer. We observe
that the projected embedding shows similar picture like the
CBOW embedding. The words represented by the projected
embedding are also located by using class information. The
projected embedding has some benefits of both CBOW and
hidden embeddings.

6.3.2 Experimental Comparisons

We firstly evaluate the performance of the unsupervised and
supervised word embedding features in a linear-chain CRF
model, which is used to model traditional N-gram features
in Liu’s work [21]. The results of the N-gram and three
word embeddings formed as the baseline systems are sum-
marized in Table 1. We observe that the performances of
the unsupervised CBOW embedding and supervised pro-
jected embedding are better than the conventional N-gram.

16The initial dimension parameter of the tool is equal to each vector’s
size. The perplexity parameter is 50.

http://www.itl.nist.gov/iad/mig/tests/rt/2003-fall/
http://www.itl.nist.gov/iad/894.01/tests/rt/2004-fall/
http://www.cs.waikato.ac.nz/ml/weka/index.html
https://code.google.com/p/crfpp/
http://sourceforge.net/projects/currennt/


J Sign Process Syst

(a) (b) (c)

Figure 4 Visualizations of unsupervised and supervised word embeddings using t-SNE. The blue points are for non-boundaries and yellow ones
are for boundaries.

However, the performance of the supervised hidden embed-
ding is the worst in the CRF models. Although the hidden
embedding becomes much discriminative, it also loses some
information. Without these information, the model prefers
to predict the examples as non-boundary, since the class is
biased. For the CBOW and projected embeddings, the CRF
model has ability to obtain the discriminative information
with the supervision of class in the training stage by using
a window size of 7 and a order of 2. Since the CBOW
and projected embeddings contain more information than
the hidden embedding, better performance are reasonable
when the backend model is able to learn sequential infor-
mation. Extra experiments using Support Vector Machine
(SVM) show that the performance of hidden embedding is
better than the CBOW and projected embeddings. Because
SVM only uses the embedding of the current word and can

not model the sequential information. It confirms that the
hidden embedding is much discriminative.

We further evaluate the unsupervised and supervised
word embedding features using our proposed DBLSTM
method. Each DBLSTM model is tuned with different num-
bers of hidden layers and units. The best performance on the
CBOW embedding is achieved when the numbers of hidden
layers and units are 2 and 256, respectively. For the hidden
embedding, the numbers of hidden layers and nodes are 3
and 256. For the projected embedding, the network has 3
hidden layers and 128 nodes when it achieves best perfor-
mance. The results are shown in Table 1. We can see that
the DBLSTM model is significantly better than the linear-
chain CRF (p < 0.05). Another observation is that the
DBLSTM models with CBOW and projected embeddings
are better than the one with hidden embedding, similar to the

Table 1 The comparison among different models using lexical information.

Model Lexical feature REF results (%) ASR results (%)

P / R / F1 SU-ER P / R / F1 SU-ER

CRF [21] n-gram 82.0 / 54.9 / 65.8 57.1 85.1 / 49.7 / 62.8 59.0

n-gram,pos,chunk 81.3 / 68.9 / 74.6 47.0 80.5 / 60.3 / 68.9 52.2

CRF CBOW embedding 79.4 / 62.7 / 70.1 53.6 83.2 / 57.4 / 67.9 54.3

Hidden embedding 100.0 / 33.9 / 50.7 66.1 93.5 / 22.1 / 35.8 79.5

Projected embedding 81.4 / 60.0 / 69.1 53.7 85.2 / 52.8 / 65.2 56.4

DBLSTM CBOW embedding 81.2 / 69.2 / 74.8 46.8 81.4 / 60.5 / 69.5 53.4

Hidden embedding 82.4 / 64.6 / 72.4 49.2 82.1 / 59.3 / 68.9 53.7

Projected embedding 83.5 / 67.5 / 74.6 45.9 82.4 / 59.6 / 69.2 53.1

DBLSTM CBOW, hidden embedding 80.1 / 76.8 / 75.5 45.9 81.0 / 62.6 / 70.6 52.1

CBOW, projected embedding 83.5 / 67.7 / 74.8 45.7 82.9 / 60.0 / 69.6 52.4

DBLSTM CBOW, hidden,pos,chunk 86.6 / 75.8 / 80.9 35.9 80.5 / 62.9 / 70.7 52.3

CBOW, projected, pos, chunk 87.0 / 78.5 / 82.5 33.3 81.3 / 62.6 / 70.8 51.8

Results are reported by Precision (P), Recall (R), F1-measure (F1) and NIST SU Error Rate (SU-ER)

The p-test is lower than 0.05 for both REF and ASR conditions
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linear-chain CRF. However, the gain becomes small.
Because the DBLSTM can obtain longer contextual infor-
mation from hidden embedding features using the forward
and backward structures than CRF, which uses a fixed
window.

Since the unsupervised and supervised word embeddings
may capture different information, we integrate the unsu-
pervised CBOW embedding with supervised projected and
hidden embeddings, respectively. Since conventional syn-
tactic information, such as POS and Chunk, are mostly used,
we also combine the POS and Chunk features together to
train the DBLSTM model. When we only using lexical
features, the best performance is achieved by concatenat-
ing unsupervised CBOW embedding, supervised projected
embedding, POS and Chunk features together. Not sur-
prisingly, the performance on speech recognition outputs
does not improve so much because of the error accumula-
tion from wrongly recognized words in speech recognition.
Specifically, the mis-recognized words make their word
embedding representations inaccurate and the tags of POS
and Chunk are inaccurate.

6.4 Experiments on Prosodic Features

To evaluate the DBLSTM model on prosodic features, we
also tune the model with different number of hidden lay-
ers and hidden units under REF condition. The tuned model
achieves the best performance when the numbers of hid-
den layers and hidden units are 3 and 128, respectively.
With this configuration, the SU-ER reduces to 47.7%. After
tuning the DBLSTM model, we further compare it with pre-
vious DT [21] and DNN [14] models. Table 2 summarizes
the results of the three models in both REF and ASR test
conditions. From the table, we observe that the prosodic
DBLSTM model significantly outperforms the prosodic DT
and DNN methods under both REF and ASR conditions
(significant at p < 0.05 [55] for SU-ER). Specifically, when

Table 2 Comparison among DT, DNN and DBLSTM in experiments
with prosodic features.

Transcript Approach Prosodic results (%)

P / R / F1 SU-ER

REF DT [21] 78.8 / 56.3 / 65.7 58.8

DNN [14] 86.9 / 56.5 / 68.5 52.1

DBLSTM 87.7 / 60.9 / 71.9 47.7

ASR DT [21] 70.6 / 56.7 / 62.9 67.0

DNN [14] 74.3 / 61.7 / 67.4 59.7

DBLSTM 89.3 / 50.2 / 64.3 55.8

Results are reported by Precision (P), Recall (R), F1-measure (F1) and
NIST SU Error Rate (SU-ER)

The p-test is lower than 0.05 for both REF and ASR conditions

compare to DNN, the DBLSTM model achieves 8.4% and
6.5% relative reduction in NIST SU error rate for REF and
ASR conditions, respectively. Because the DBLSTM has
additional ability in leveraging context information in the
prosodic features through hidden units with LSTM architec-
ture, besides the DNN’s ability of non-linearly transforming
features into good representations. The LSTM architecture
has benefits in embedding information of long time steps
between relevant input and target events. We believe that
the context and sequence information is essential in prosody
based sentence boundary detection. For example, if the
pause duration of current candidate is long and this candi-
date is predicted as a sentence boundary, the next candidate
may have a shorter pause duration and the probability of
labeling it as a boundary may become lower. Furthermore,
compare with the previous DT method, the deep learning
methods show its superiority in detecting sentence bound-
aries. As we extract a rich set of prosodic features, there
must be some redundancy. The DNN and DBLSTM meth-
ods can handle these through several non-linear transforms
and generate good feature representations.

We also notice an apparent increase of SU error rate for
all three models on ASR transcripts. This is mainly because
the word errors in recognition outputs affect the prosodic
feature extraction. For example, the wrong word timing
information mislead the prosody extraction region, since we
choose the inter-word boundary as the candidates. However,
we observe that DT suffers more from the recognition errors
than DNN and DBLSTM. This may indicate that neural net-
work is more robust in processing the imperfect prosodic
features.

6.5 Experiments on Combined Features

Table 3 shows the performances of lexical and prosodic
information fusion. Please note that the DT-CRF and DNN-
CRF systems combine the lexical features with prosodic
posterior probabilities from a DT and a DNN into a linear-
chain CRF, respectively. The DBLSTM model integrates the
lexical and prosodic features directly at the feature level by
concatenating them together as inputs. The results show that
lexical and prosodic information fusion generally results
in significant improvements as compared with lexical-only
(Table 1) and prosodic-only (Table 2) in both REF and ASR
conditions. This may indicate that prosodic information and
lexical information are complimentary in sentence boundary
detection.

Another observation is that the proposed DBLSTM
approach outperforms both the DT-CRF and the DNN-CRF
systems. In the REF condition, the DBLSTM approach
decreases the SU-ER from 43.1% (DT-CRF) and 35.9%
(DNN-CRF) to 27.2% with 36.9% and 24.2% relative
reduction and the difference is significant (p < 0.01). In the



J Sign Process Syst

Table 3 Experimental comparisons using combined features by different fusion strategies in REF and ASR conditions.

Approach Information source Results (%)

Lexical Prosodic P / R / F1 SU-ER

REF DT-CRF [21] n-gram, pos, chunk DT posterior 81.4 / 73.9 / 77.4 43.1

DNN-CRF [14] n-gram, pos, chunk DNN posterior 85.9 / 76.7 / 81.0 35.9

DBLSTM CBOW, projected, pos, chunk prosodic features 87.4 / 85.0 / 86.2 27.2

Viterbi Posetriors of above DBLSTM approach 87.3 / 85.5 / 86.4 27.0

ASR DT-CRF [21] n-gram,pos,chunk DT posterior 90.6 / 49.5 / 64.0 55.6

DNN-CRF [14] n-gram, pos, chunk DNN posterior 95.0 / 49.3 / 64.9 53.3

DBLSTM CBOW, projected,pos,chunk Prosodic features 79.4 / 70.1 / 74.5 48.1

Viterbi Posetriors of above DBLSTM approach 78.9 / 70.8 / 74.6 48.2

Results are reported by Precision (P), Recall (R), F1-measure (F1) and NIST SU Error Rate (SU-ER)

p < 0.01 in REF condition, and p < 0.05 in ASR condition

ASR condition, DBLSTM lowers the SU-ER to 50.9% and
has 13.5% and 9.8% relative SU-ER reduction compared
with DT-CRF and DNN-CRF, respectively(significant when
p < 0.05). Comparing the precision and recall obtained
from the ASR condition, the DNN-CRF system achieves
better precision (95.0%) than the DT-CRF (90.6%). How-
ever, as the recall are still at a low level for both systems,
the final F1 is not improved much. The proposed DBLSTM
approach can greatly improve the recall rate with some
drop-down of precision.

When we further employ global decisions using the pos-
terior probabilities from the proposed DBLSTM approach
by Viterbi decoding, we observe that the performance
improves slightly. Compared with the predicted boundary
sequences before Viterbi decoding, several non-boundaries
are wrongly predicted as boundaries and some wrongly pre-
dicted as non-boundary examples are truly set as boundaries
when the Viterbi algorithm is applied. The tuned transition
probabilities try to increase the truly prediction of sentence
boundaries and inevitably cause false alarms. The increas-
ing number of true boundaries is slightly bigger than false
alarms. The main reason of the insignificant improvement
is that the DBLSTM approach is deep and bidirectional
architecture, which is able to make correct decisions by opti-
mizing contextual information from history and future. If
the back-end model is weaker than the DBLSTM model, the
Viterbi decoding maybe improve the performance a lot.

7 Conclusions and Future Work

We have developed a deep bidirectional recurrent neu-
ral network approach based on long short-term memory
architecture in sentence boundary detection, an important
speech metadata extraction (MDE) task. In addition, we
introduce an unsupervised CBOW embedding containing

semantic and syntactic information into sentence bound-
ary detection task. Furthermore, we propose two supervised
word embeddings (projected embedding and hidden embed-
ding) extracted from a neural network to represent word
identities. Our proposed approach has shown superior per-
formance as compared with the previous state-of-the-art
DT-CRF and DNN-CRF systems under the NIST RT-04F
and RT-03F MDE evaluation framework. The improvement
mainly comes from the contributions of DBLSTM in cap-
turing long-context and complementary information from
combined prosodic and lexical features. The proposed unsu-
pervised and supervised word embeddings also contribute
to the improvement.

In this work, we integrate the word embedding with
prosodic features as inputs to the DBLSTM approach to pre-
dict sentence boundaries. The reason to learn word embed-
ding is that our current paired text and speech data are not
enough to build good model on the direct combination of
one hot representations and prosodic features. The sepa-
rately learned word embedding has benefits of using huge
extra text data. In our future work, we may link the feature
learning and detection model together by a flexible neural
network architecture without separately learning the word
embedding. The features will be automatically learned from
word sequences and speech signals to reduce human efforts
on feature engineering. We also notice an apparent perfor-
mance degradation when we shift from reference transcripts
to ASR transcripts. We will explore approaches to minimize
the performance gap between clean manual transcripts and
ASR transcripts with inevitable recognition errors.
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